Сборник задач по математике с решениями - А. А. Рывкин, Е. Б. Ваховский 2003
Задачи
Алгебраические уравнения и системы
Равенства. Тождества. Два математических выражения, соединенных знаком =, образуют равенство.
Примеры равенств:
а² + b² = с², 3 = 3, 3 = 5,
sin² x + cos² x = 1,
, sin x = 3.
Числовое равенство может быть истинным (верным) или ложным (неверным). Равенство 3 = 3 истинное, равенство 3 = 5 ложное.
Буквенное равенство при различных значениях входящих в него букв также принимает одно из двух значений: «истина» или «ложь». Например, равенство а² + b² = с² при а = 3, b = 4, с = 5 истинно, а при а = 3, b = 4, с = 6 ложно. Равенство sin² x + cos² x = 1 истинно при всех действительных значениях x, а равенство sin x = 3 всегда ложно.
Если какая-либо часть равенства (или обе части одновременно) перестает существовать, то равенство становится ложным. Равенство
ложно при
, где k — любое целое число, так как для четных k не существует ctg x, а для нечетных k не существует tg x. Равенство
ложно при x = −1, так как его левая часть теряет смысл при этом значении x (обратите внимание, что правая часть существует всегда). Обе части равенства sin x = 3 всегда имеют смысл, однако это равенство всегда ложно.
Для любого математического выражения можно указать множество систем (наборов) значений входящих в него букв, при которых это выражение существует, т. е. принимает некоторое числовое значение. Такое множество мы будем называть областью определения (областью существования) рассматриваемого математического выражения.
Для выражения
областью определения является числовая ось с «выколотой» точкой x = −1.
Для выражения logу √x найти область определения уже несколько сложнее. Во-первых, из числа x извлекается квадратный корень. Эта операция возможна, если x ≥ 0. Чтобы затем можно было найти логарифм от √x, необходимо √x > 0. Оба условия выполняются при x > 0. В основании логарифма может стоять лишь положительное число, отличное от единицы. Таким образом, получаем область определения: x > 0, у > 0, у ≠ 1.
Два математических выражения называются тождественными, если
1) их области определения совпадают;
2) они принимают одинаковые числовые значения при подстановке в каждое выражение одного и того же набора значений входящих в него букв, произвольно выбранного из области определения.
Равенство, в котором правая и левая части являются тождественными выражениями, называется тождеством.
Для обозначения тождественного равенства иногда используется символ ≡.
Примеры тождеств: (а − b)² = а² − 2аb + b², sin² x + cos² x = 1,
Первые два тождества общеизвестны. Последнее равенство тоже является тождеством. В самом деле, область определения левой части не содержит ни одной точки, область определения правой части тоже не содержит ни одной точки. Поскольку области определения правой и левой частей — пустые множества, то требования 1) и 2) в определении тождества удовлетворяются. Равенство
, как мы видели, истинно при всех x, кроме x = −1. Оно не является тождеством, так как требование 1) не удовлетворено. Однако нарушение происходит только в одной точке.
Введем понятие неабсолютного тождества.
Пусть в нашем распоряжении есть два математических выражения, имеющих разные области определения. Обозначим через U их общую часть. Если на множестве U значения обоих математических выражений совпадают, то говорят, что они неабсолютно тождественны, а соответствующее равенство называют неабсолютным тождеством.
Характерным примером неабсолютного тождества является соотношение
lg ху = lg x + lg у.
Область определения правой части: x > 0, у > 0, т. е. все точки плоскости, лежащие внутри I квадранта. Область определения левой части: x > 0, у > 0; x < 0, у < 0; это уже будут внутренние точки I и III квадрантов. Общая часть областей определения: x > 0, у > 0. На этой общей части приведенное соотношение превращается в истинное равенство.
Напомним определение тождества, которым обычно пользуются в средней школе.
Тождеством называется равенство, справедливое при всех значениях входящих в него букв, при которых обе его части имеют смысл.
Нетрудно заметить, что это определение объединяет понятия тождества и неабсолютного тождества в одно. Чтобы подчеркнуть, что мы пользуемся другим определением тождества, будем иногда вместо термина тождество употреблять термин абсолютное тождество.
Упражнения[2]
Какие из следующих равенств являются абсолютными тождествами, а какие — неабсолютными? Приведите доказательство сделанного вами вывода.
1. sin² x + cos² x = 1,
2. tg x = sin x/cos x
3. tg x = 1/ctg x
4. sec x = 1/cos x
5. sec x cos x = 1,
6. sec x − 1/cos x = 0,
7.
8.
9.
10.
11.
12.
13.
14. lg xy = lg |x| + lg |y|,
15. lg x² = 2 lg x,
16. lg x² = 2 lg |x|.
Уравнение, корни уравнения, равносильность. Когда мы говорим, что равенство
аx² + bx + с = 0 (1)
является уравнением относительно буквы x, то подразумеваем, что для фиксированных а, b и с (эти буквы являются параметрами уравнения) нужно отыскать значения x, обращающие (1) в истинное числовое равенство.
Другими словами, предполагают, что для букв а, b и с выбраны определенные, хотя и произвольные, значения, в то время как буква x, которой обозначено неизвестное, остается «свободной». Вместо нее можно подставлять различные числа, в результате чего возникнут либо истинные, либо ложные числовые равенства. Равенство (1) выполняет роль «формы» (или «схемы») уравнений, которая превращается в уравнение, как только мы остановим свой выбор на конкретных значениях параметров. Если выбор значений параметров уже сделан, то полученное уравнение можно рассматривать как «форму» числовых равенств — ложных или истинных.
Часто представляют себе уравнение как равенство двух функций (в частности, как равенство функции нулю), а не как форму. Такое представление недостаточно точно, так как может привести к потере корней.
Например, уравнение
x2x = 1 (2)
имеет корни x1 = 1 и x2 = −1, в то время как функция x2x определена только при положительных x.
Если же уравнение (2) мы рассматриваем как форму, порождающую числовые равенства, то при x = −1 слева получим выражение (−1)−2, которое имеет смысл и равно 1.
Итак, уравнением относительно неизвестного x называется форма числовых равенств, которая превращается в истинное или ложное числовое равенство при подстановке вместо буквы x какого-нибудь числа, взятого из рассматриваемой области чисел. Приведем еще несколько определений.
Пусть x, у, z, ... — неизвестные в уравнении
f(x, у, z, ...) = 0. (3)
Набор значений неизвестных[3]
называется решением уравнения (3), если
f(а, b, с, ...) = 0 (3′)
является истинным числовым равенством.
Решение уравнения с одним неизвестным называют также корнем этого уравнения.
Корнем уравнения 3x² + 2x − 1 = 0 является число x = −1, решением уравнения 2у² − 3xу + x² = 0 является система чисел
Решить уравнение — значит, найти все его решения или доказать, что оно не имеет решений.
Два уравнения называются равносильными, если они имеют одно и то же множество решений. Другими словами, любое решение первого уравнения является также решением второго уравнения и, обратно, любое решение второго уравнения является также решением первого уравнения.
Вообще говоря, понятие равносильности тесно связано с определенной областью чисел. Так, уравнения x − 1 = 0 и (x − 1)(x² − 3) = 0 равносильны в области целых чисел и неравносильны в области действительных чисел.
Говорят, что второе уравнение является следствием первого, если каждый корень первого уравнения является корнем второго уравнения.
В процессе решения уравнение можно заменить любым равносильным ему уравнением. Легко убедиться в том, что замена входящего в уравнение математического выражения тождественным[4] приводит к равносильному уравнению.
Во многих случаях удобно заменить данное уравнение его следствием. В результате такой замены могут появиться посторонние корни, т. е. такие числа, которые являются корнями следствия, но не удовлетворяют исходному уравнению. Чтобы отсеять посторонние корни, следует сделать проверку всех найденных значений неизвестного.
Замена входящего в уравнение выражения неабсолютно тождественным может нарушить равносильность. В результате у уравнения могут появиться посторонние корни, а некоторые корни могут быть потеряны.
Например, применение неабсолютного тождества[5]
log x + log у = log xy
приводит к следствию, в то время как применение этого же тождества справа налево
log xy = log x + log у
может повлечь за собой потерю решений. В первом случае в результате замены log x + log у на log xy мы можем приобрести решения, лежащие в области x < 0, у < 0. Во втором случае решения из той же самой области могут быть потеряны.
При решении большинства уравнений угроза приобретения посторонних корней не должна нас пугать, так как в наших руках есть такое надежное средство, как проверка. Гораздо более опасной является перспектива потери корней.
Избежать потери корней можно, если вместо неабсолютных тождеств, сужающих область определения, пользоваться неабсолютными тождествами, расширяющими область определения уравнения.
Вернемся к рассмотренному только что примеру с суммой логарифмов. Когда при решении уравнения приходится потенцировать, то неабсолютное тождество
log x + log у = log xу
не приводит к потере корней. Если же по ходу преобразований возникла необходимость прологарифмировать произведение, то нужно воспользоваться другим неабсолютным тождеством
log xу = log |x| + log |у|,
применение которого может лишь расширить область определения уравнения.
Есть второй прием, позволяющий избежать потери решений, который мы поясним на примере уравнения: sin 2x + 7 cos 2x + 7 = 0. Воспользуемся формулами, позволяющими выразить sin 2x и cos 2x через tg x. Получим
Приведя к общему знаменателю и отбросив знаменатель, который всегда отличен от нуля, получим простое уравнение
tg x = −7,
откуда x = −arctg 7 + πk, где k — любое целое число.
Хотя все произведенные преобразования кажутся «законными», мы легко убедимся в том, что целая серия корней x = π/2 + kπ потеряна. Достаточно подставить эти значения неизвестного в исходное уравнение.
Корни были потеряны в результате применения неабсолютных тождеств
левые части которых существуют всегда, а правые теряют смысл
именно при x = π/2 + kπ.
Если по каким-то причинам мы не могли избежать применения неабсолютных тождеств, грозящих потерей корней, то нам не остается ничего иного, как проверить те значения неизвестного, которые оказались исключенными из области определения входящих в уравнение выражений. В нашем примере, как и в большинстве тригонометрических уравнений, это нетрудно сделать.
Наконец, отметим такой важный момент при решении уравнений, как правильное использование условий.
Уравнение
lg (1 + x) + 3 lg (1 − x) = lg (1 − x²) − 2
удобнее всего решать, преобразовав lg (1 − x²) в сумму логарифмов. Чтобы оградить себя от возможной потери корней, мы должны написать
lg (1 − x²) = lg |1 + x| + lg |1 − x|.
Однако подобная осторожность в этом примере является излишней. Поскольку в уравнение наряду с выражением lg (1 − x²) входят lg (1 + x) и lg (1 − x), то 1 + x и 1 − x должны быть положительными, чтобы левая часть уравнения имела смысл. Поэтому вместо lg |1 + x| и lg |1 − x| можно написать lg (1 + x) и lg (1 − x). Таким образом, данное уравнение принимает вид
lg (1 + x) + 3 lg (1 − x) = lg (1 + x) + lg (1 − x) − 2.
Приведя подобные члены, получим
2 lg (1 − x) = −2,
откуда x = 0,9 — единственный корень данного уравнения.
На этом примере мы видим, что правильное использование условия позволяет быстрее достичь цели, чем в случае чисто формальных преобразований.
Однако достаточно ли обоснованным было приведенное выше решение? Чтобы убедиться в этом, решите самостоятельно такое уравнение
lg (1 + x) + 3 lg (1 − x) = lg (1 − x²) + 2.
Оно отличается от предыдущего лишь знаком последнего члена. Поэтому, повторив все приведенные только что рассуждения, получим
2 lg (1 − x)= 2,
откуда x = −9. Подставив это значение x в исходное уравнение, убеждаемся в том, что нами найден посторонний корень. Произошло это потому, что уравнения
lg (1 + x) + 3 lg (1 − x) = lg (1 + x) + lg (1 − x) + 2
и
2 lg (1 − x) = 2
неравносильны. Равносильность нарушилась в результате уничтожения в правой и левой частях уравнения члена lg (1 + x), который существенно ограничивал область определения уравнения. Таким образом, проверка здесь является необходимой частью решения.
Разобранный пример нередко предлагают решать так. Найдем область определения уравнения:
Теперь будем применять к уравнению те преобразования, которые не могут привести к потере корней:
lg (1 + x) + lg (1 − x)³ = lg (1 − x²) + lg 100,
lg [(1 + x)(1 − x)³] = lg 100(1 − x²),
(1 + x)(1 − x)³ = 100(1 − x²).
Решая последнее уравнение, найдем х1 = 1, х2 = −1, х3 = −9, х4 = 11. Так как все четыре числа не попали в интервал −1 < x < 1, то исходное уравнение не имеет корней.
Для данного уравнения такой метод решения оказывается верным, так как позволяет отбросить все найденные значения x. Однако основан он на ошибочном убеждении, что в процессе преобразований могут быть приобретены лишь те посторонние корни, которые не попадают в область определения исходного уравнения.
Приведем два примера.
Вначале рассмотрим уравнение
arcsin x = π/3 + arcsin x/2.
Его область определения — отрезок −1 ≤ x ≤ 1. Возьмем синусы от правой и левой частей уравнения, в результате чего получим следствие
sin (arcsin x) = sin (π/3 + arcsin x/2), т. е.
Решая последнее уравнение, получим х1 = −1, х2 = 1. Оба значения x принадлежат области определения исходного уравнения, однако х2 = −1 — посторонний корень, в чем легко убедиться проверкой.
Решим теперь в области действительных чисел уравнение
Областью определения этого уравнения является вся числовая ось. Возведем данное уравнение в куб:
В последнее уравнение входит выражение
являющееся левой частью данного уравнения. Заменяем его правой частью этого уравнения. Получим
Возведя в куб, получим
(x + 1)(3x + 1)(x − 1) = −(x + 1)³,
откуда x1 = −1, x2 = 0.
Проверка убеждает нас в том, что корень x2 = 0 является посторонним. Он появился в результате замены левой части данного уравнения на не равную ей тождественно правую часть.
Приведенные примеры свидетельствуют о том, что нахождение области определения уравнения (или, как иногда говорят, области допустимых значений — ОДЗ) не гарантирует нас от появления посторонних корней, т. е. не избавляет от необходимости делать проверку полученных в результате решения корней.
Это не означает, что находить область определения всегда бессмысленно. Можно привести много примеров, когда знание области определения существенно упрощает решение.
Что же касается проверки, то она оказывается излишней только в тех случаях, когда исследована эквивалентность применявшихся в процессе решения преобразований.
Для этого необходимо выяснить, при каких преобразованиях мы получаем следствие данного уравнения, а в каких случаях нам грозит потеря корней.
Посмотрим на примере, как исследуется равносильность двух уравнений. Имеет место следующая теорема.
Теорема 1. Если в уравнении произвести уничтожение двух подобным членов, то получится следствие данного уравнения.
Другими словами, если уравнение
f(x) + φ(x) − φ(x) = 0 (4)
заменить уравнением
f(x) = 0, (5)
то потери корней не произойдет, а приобретение корней может произойти.
Сначала докажем, что не произойдет потери корней, т. е. что любой корень x = с уравнения (4) является корнем уравнения (5). Если x = с — корень уравнения (4), то
f(с) + φ(c) − φ(c) = 0 (4′)
— истинное числовое равенство, где f(с) и φ(с) — числа. Оно не нарушится в результате прибавления и последующего вычитания числа φ(c).
Таким образом,
f(с) = 0 (5′)
— истинное числовое равенство, т. е. x = с является также и корнем уравнения (5).
Остается убедиться в том, что уравнение (5) может иметь корни, посторонние для уравнения (4). Чтобы доказать это, достаточно привести пример. Уравнение
cos x + tg x − tg x = 0 (4′′)
после уничтожения подобных членов принимает вид
cos x = 0. (5′′)
Корнями уравнения (5′′) будут числа x = π/2 + kπ. Но ни одно из них не удовлетворяет уравнению (4′′), так как tg x перестает существовать, когда cos x = 0.
Итак, теорема доказана.
Несколько уравнений могут образовать систему или совокупность.
Говорят о системе уравнений, если требуется найти все решения, общие для всех уравнений, входящих в систему.
Если же нужно найти все такие решения, которые удовлетворяют хотя бы одному из нескольких уравнений, то говорят, что эти уравнения образуют совокупность.
Систему уравнений обычно записывают в столбик и ставят сбоку фигурную скобку — знак системы; совокупность уравнений, как правило, записывается в строку. Если же совокупность уравнений удобнее записать в столбик, то слева ставят квадратную скобку — знак совокупности.
Если мы рассмотрим совокупность двух уравнений:
x² − x − 2 = 0 и x² − 2x − 3 = 0,
то корни первого: x1 = 2, x2 = −1 нужно объединить с корнями второго: x1 = 3, x2 = −1. Получим решение совокупности:
x1 = 2, x2 = −1, x3 = 3.
Если же мы рассмотрим систему
то из корней первого уравнения нужно выбрать те, которые удовлетворяют и второму уравнению системы. Получим только одно решение системы: x = −1.
Уравнение
f(x) · φ(x) = 0 (6)
называется распадающимся.
Теорема 2. Уравнение (6) равносильно совокупности двух систем:
(7)
Доказательство. Если x = а — корень уравнения (6), то f(а) и φ(а) существуют и либо f(а) = 0, либо φ(а) = 0 (случай, когда оба сомножителя одновременно равны нулю нами из рассмотрения не исключен). Следовательно, одна из систем (7) удовлетворяется при x = а.
Пусть теперь x = а — корень совокупности (7). Если при x = а удовлетворяется либо первая, либо вторая система, то и в том и в другом случае f(x) · φ(x) = 0, т. е. x = а — корень уравнения (6).
Упражнения
Докажите следующие теоремы о равносильности уравнений.
17. Если к обеим частям уравнения
f(x) = φ(x)
прибавить выражение ψ(x), то в случае, когда ψ(x) имеет смысл при всяком x, получится равносильное уравнение, в противном случае могут быть потеряны корни.
18. Уравнения
f(x) + ψ(x) − ψ(x) = φ(x)
и
f(x) = φ(x)
в случае, когда ψ(x) имеет смысл при всяком x, равносильны; в противном случае второе уравнение является следствием первого.
19. Если в уравнении
(8)
отбросить знаменатель, то получится уравнение
f(x) = ψ(x),
являющееся следствием данного уравнения.
19а. Уравнение (8) равносильно системе
(8а)
20. Если обе части уравнения f(x) = φ(x) возвести в квадрат, то полученное уравнение
[f(x)]² = [φ(x)]² (9)
является следствием данного уравнения. Уравнение (9) равносильно совокупности двух уравнений:
f(x) = φ(x), f(x) = −φ(x).
21. Чему равносильна система
22. Докажите, что следствием уравнения
является уравнение
при условии, что
Найдите действительные корни уравнений:
9.1. |x| − 2|x + 1| + 3|x + 2| = 0.
9.2. |x² − 9| + |x² − 4| = 5.
9.3.
9.4.
9.5.
9.6.
9.7.
а и b — действительные числа.
9.8.
а — действительное число.
9.9.
а — действительное число.
9.10. Найдите действительные решения уравнения
|x² − 3 · x/2 − 1| = −x² − 4x + β
и определите, при каких значениях β оно имеет единственное[6] действительное решение.
9.11. Решите систему
9.12. Найдите все действительные значения k, при которых решение системы
удовлетворяет условию: x > 1/k, у > 0.
9.13. В области действительных чисел решите систему
9.14. При каких значениях а система
имеет действительные решения? Найдите эти решения.
Решите системы:
9.15.
9.16.
9.17.
9.18.
9.19. Числа x, у и z удовлетворяют системе уравнений
где а, b, с не равны друг другу. Найдите x³ + у³ + z³.
Решите системы:
9.20.
9.21.
9.22.
9.23.
9.24. Найдите все действительные решения системы
9.25. Найдите одно решение системы
Решите системы в области действительных чисел:
9.26.
9.27.
9.28.
9.29.
если а > b > 0 и а + b < 1.
9.30. Найдите все значения а и b, при которых система
имеет единственное решение (а, b, x, у — действительные числа).
9.31. Найдите все значения а, при которых система
имеет хотя бы одно решение и всякое ее решение удовлетворяет уравнению x + у = 0 (а, x, у — действительные числа).
9.32. Найдите все значения а, при которых система
имеет хотя бы одно решение для любого значения b (а, b, x, у — действительные числа).
9.33. Найдите все значения а и b, при которых система уравнений
имеет единственное решение (x, у, а, b — действительные числа, x > 0).
9.34. Решите систему
в области действительных чисел.
9.35. Решите уравнение
|6 − |x − 3| − |x + 1|| − аx − 5а = 4
при всех действительных значениях параметра а.
9.36. При всех действительных а решите уравнение
9.37. Решите уравнение
9.38. Решите систему уравнений