Сборник задач по математике с решениями - А. А. Рывкин, Е. Б. Ваховский 2003

Решения
Соединения и бином

21.1. Присвоим каждому из сидящих за круглым столом номер: а1, а2, ..., аn. Образовывая циклические перестановки: аn, а1, а2, ..., аn − 1; ап − 1, аn, а1, а2, ..., ап − 2 и т. д., мы будем получать тот же способ размещения за столом. Таких циклических перестановок можно составить n.

Кроме этого, нужно учесть, что сосед слева и сосед справа неразличимы, т. е. перестановки а1, а2, ..., ап и а1, аn, аn − 1, ..., а2 дают одно и то же размещение за столом. Так как всего возможно n! перестановок, из которых каждые 2n одинаковы, то искомое число равно

n!/2n = ½(n − 1)!.

Ответ. ½(n − 1)!.

21.2. Всего из пяти элементов можно составить Р5 перестановок. Среди них будет Р4, y которых на первом месте а1, и Р4, y которых на первом месте а2. Однако перестановки, y которых на первом месте а1, а на втором месте а2, попали и в первую, и во вторую группы. Таких перестановок Р3.

Поэтому искомое число перестановок равно

Р5 − (2P4Р3) = 78.

Ответ. 78.

21.3. Из семи разрядов три должны быть заняты двойками, что дает

вариантов. На каждое из оставшихся мест можно поместить любую из восьми цифр, благодаря чему каждый из предыдущих вариантов даст еще 84 возможностей.

Ответ.

21.4. Предположим, что в каждое число входят три различные единицы: l1, l2, l3, а остальные цифры 0, 2, 3, 4 и 5 равноправны. Тогда можно получить Р8 различных чисел. Отсюда нужно исключить Р7 чисел, начинающихся с нуля.

На самом деле разные единицы неразличимы. Другими словами, вместо одного числа мы получим Р3 одинаковых чисел, отличающихся лишь взаимными перестановками единиц.

Ответ.

21.5. Предположим, что каюты неравноценны. Это дает в 8! раз больше вариантов, чем в случае равноценных кают, что мы учтем позднее.

В первую каюту можно заселить любых четырех из 32 экскурсантов, что можно сделать

способами, во вторую — любых четырех из 28 оставшихся и т. д. В итоге получим

способов. Это число остается разделить на 8! и произвести упрощения.

Ответ.

.

21.6. Рассмотрим k−й член суммы

Данную сумму можно переписать в виде

Ответ. n · 2n − 1.

21.7. Из разложения

выделим действительную часть и приравняем действительной части комплексного числа (1 + i)n. В самом деле,

т. е.

где n − 1 ≤ 2kn.

Последнее ограничение означает, что через 2k обозначено то из чисел n − 1 и n, которое является четным.

Ответ.

21.8. Условию задачи удовлетворяют такие n, для которых равенство

выполняется хотя бы для одного k. Заметим, что 1 ≤ kn − 1; n ≥ 2. Равенство (1) перепишем в виде

что после простых преобразований даст

4k² − 4nk + п² − n − 2 = 0,

откуда

Чтобы выражение в правой части было целым, нужно сначала потребовать

n + 2 = m², т. е. n = m² − 2.

Поскольку n ≥ 2, то т² ≥ 4 и m ≥ 2. Тогда

Если взять знак минус, получим

Число, стоящее в числителе, четное при всех m. Значение m = 2 нужно исключить, так как тогда k1 = 0, что невозможно. Если же m ≥ 3, то m + 1 ≥ 4, а m − 2 ≥ 1. Следовательно, k1 ≥ 2. Потребуем теперь, чтобы выполнялось второе условие: k1n − 1, т. е.

что равносильно неравенству m² + m − 4 ≥ 0. Последнее неравенство справедливо при всех m ≥ 3.

Остается исследовать

Так как условие n ≥ 2, из которого следует, что m ≥ 2, должно выполняться и для k2, то формула (3) по сравнению с (2) может дать лишь одно дополнительное значение: m = 2. Однако при m = 2 получим, что k2 = 2 и n = 2. Это противоречит требованию kn − 1. Таким образом, формула (3) не дает новых значений m, а следовательно, и n.

Ответ. n = m² − 2, где m = 3, 4, 5, ... .

21.9. Так как

(a + b + c + d)n = [(a + b) + (c + d)]n = (a + b)n + Cn1(a + b)n − 1(c + d) + ... + (c + d)n,

то после раскрытия скобок получим все неподобные члены. Их число будет равно

(n + 1) · 1 + n · 2 + (n − 1) · 3 + ... + 2n + 1(n + 1),

где для симметрии к крайним членам приписаны множителями единицы. Чтобы вычислить эту сумму, запишем ее k−й член: (n + 2 − k) = (n + 2)kk². Тогда наша сумма примет вид

Ответ.

21.10. Предположим, что 0 ≤ kn − 1. Запишем данное выражение в виде

(1 + x + x² + ... + xk − 1 + xk + xk + 1 + ... + xn − 1)².

Члены, содержащие xk, могут быть получены только в результате почленного перемножения членов суммы 1 + x + x² + ... + xk − 1 + xk с членами той же суммы, записанной в обратном порядке, т. е.

1 · хk, x · хk − 1, ..., хk − 1 · x, xk · 1

Так как слагаемых будет k + 1, то и коэффициент при xk будет равен k + 1.

Предположим теперь, что n − 1 < k ≤ 2(n − 1). Тогда нужно почленно перемножить суммы

xkn + 1 + ... + xn − 1, xn − 1 + ... + xkn + 1,

в результате чего получим 2nk − 1 членов, содержащих xk.

Ответ. k + 1, если 0 ≤ kn − 1;

2nk − 1, если n − 1 < k ≤ 2n − 2.

21.11. Сравним коэффициент члена разложения с номером k + 1 с коэффициентом десятого члена разложения:

Так как знаменатели одинаковы, то

Поскольку десятый член разложения имеет наибольший коэффициент, то он больше девятого и больше одиннадцатого:

Из первого неравенства следует, что

Из второго

Ответ. n = 13.

21.12. Преобразуем выражение, стоящее в левой части, следующим образом:

Вопрос состоит в следующем: если k, m = 1, 2, ..., 20, причем mk, то какие значения от 0 до 100 принимает выражение 5k − 2m.

Если m = 0, 1, 2, 3, 4, то получим соответственно 5k, 5k − 2, 5k − 4, 5k − 6, 5k − 8. Если бы k не было связано ограничениями, то мы получили бы все числа, так как в эти пять выражений вошли числа, дающие при делении на 5 в остатке 0, 3, 1, 4 и 2 соответственно. Однако k = 0, 1, ..., 20 и, кроме того, km. Так как 5k получено при m = 0, то k может принимать все свои 21 значение, в результате чего получим все числа, кратные 5 от 0 до 100. Рассмотрим теперь числа, которые при делении на 5 дают в остатке 1. У нас они записаны в виде 5k − 4 и получились при m = 2, в силу чего k = 2, 3, ..., 20. В результате мы получим 19 чисел, дающих при делении на 5 в остатке 1. В эту группу не войдет лишь число 1. Числа, дающие в остатке 2, записаны в виде 5k − 8, где k ≥ 4. Следовательно, 5k − 8 = 12, 17, ..., 92, т. е. выпадают числа 2, 7 и 97. Для чисел вида 5k − 2 переменная k = 1, 2, ..., 20 и 5k − 2 = 3, 8, ..., 98, куда вошли все числа, дающие в остатке 3. Среди чисел вида 5k − 6, где k = 3, ..., 20, мы не встретим 4 и 99.

Числа 1, 2, 4, 7, 97 и 99 не могут быть получены из выражения 5k − 2m и при m > 4. В самом деле, с одной стороны, 5k − 2m ≥ 5m − 2m = 3m > 12, а с другой стороны,

5k − 2m < 5k − 8 ≤ 100 − 8 = 92,

т. е.

12 < 5k − 2m < 92.

Итак, выпали 6 чисел 1, 2, 4, 7, 97 и 99, т. е. будут отсутствовать члены с показателями 99, 98, 96, 93, 3, 1.

Ответ. 95.

21.13. Пусть Рn — ответ на вопрос задачи для последовательности, состоящей из n элементов. В первой группе может оказаться либо один элемент (а1), либо два элемента (а1, а2). Разбиений, содержащих в первой группе один элемент (а1), будет столько, сколько разбиений можно образовать из n − 1 оставшихся членов последовательности а2, а3, ..., аn, т. е. Рn − 1. Разбиений же, содержащих в первой группе два элемента, будет Рn − 2, так как после образования группы (а1, а2) останется n − 2 элементов а3, ..., аn.

Итак

Рn = Рn − 1 + Рn − 2.

Такая формула называется рекуррентной, потому что, зная Р1 и Р2 и применяя ее последовательно, мы получим Р3, затем Р4 и т. д. Поскольку Р1 = 1, а Р2 = 2, то Р3 = 3, Р4 = 5, Р5 = 8, Р6 = 13, Р7 = 21, Р8 = 34, Р9 = 55, Р10 = 89.

Ответ. 89.

21.14. Пусть на плоскости проведены m параллельных прямых. Они разобьют ее на m + 1 областей. Если провести еще одну непараллельную прямую, то областей станет 2(m + 1). Предположим, что k непараллельных прямых образуют, пересекаясь с m параллельными прямыми, Мk областей. Если добавить еще одну прямую, пересекающую все имеющиеся, но не проходящую ни через одну из старых точек пересечения, то на этой прямой будет m + k точек пересечения с остальными прямыми, в результате чего образуется m + k + 1 новых областей.

Таким образом,

Мk + 1 = Мk + m + k + 1.

Так как Мо = m + 1, то

Остается доказать эту формулу методом математической индукции, что сводится к элементарным выкладкам, которые мы оставляем читателю.

Ответ.






Для любых предложений по сайту: [email protected]