ВНЕШНИЙ УГОЛ ТРЕУГОЛЬНИКА. ТЕОРЕМА О ВНЕШНЕМ УГЛЕ ТРЕУГОЛЬНИКА - СУММА УГЛОВ ТРЕУГОЛЬНИКА - СООТНОШЕНИЯ МЕЖДУ СТОРОНАМИ И УГЛАМИ ТРЕУГОЛЬНИКА

Геометрия 7 класс поурочные планы

itle

Цели: закрепить знания учащихся о сумме углов треугольника при решении задач; ввести понятие внешнего угла треугольника; доказать теорему о внешнем угле треугольника; учить решению задач.

Ход урока

1. Проверка усвоения изученного материала.

1. Один учащийся на доске доказывает теорему о сумме углов треугольника.

2. Второй учащийся решает на доске задачу № 230.

3. Устно со всем классом решаем задачи по готовым чертежам.

Вычислите все неизвестные углы треугольника (по рис. 1-8).




II. Изучение нового материала.

1. Ввести понятие внешнего угла треугольника.

2. Доказать теорему о внешнем угле треугольника (рис. 125 учебника).

3. Устно решить задачу: в треугольнике ABC ∠В = 110°. Чему равны: а) сумма остальных внутренних углов треугольника? б) внешний угол при вершине В?

4. По готовому чертежу на доске устно решить задачу:

Найдите внутренние и внешний угол СДF треугольника КСД.



III. Решение задач.

1. Решить задачу № 232 под руководством учителя на доске и в тетрадях.

Дано: ∠CBE — внешний угол треугольника ABC; ∠CBE = 2∠A.

Доказать: ΔАВС — равнобедренный.



Решение: Проведем биссектрисы BF и ВД смежных углов СВЕ и ABC, тогда ВЕ ⊥ ВД (см. задачу № 83). BF || АС, так как ∠1 = ∠2 = ∠3. а углы 1 и 3 соответственные при пересечении прямых BF и АС секущей АВ. ВД ⊥ АС, так как ВД ⊥ BF, a BF || AC. В треугольнике ABC биссектриса ВД является высотой, следовательно, треугольник ABC - равнобедренный (см. задачу № 133).

2. Обратное утверждение также верно, а именно: если треугольник равнобедренный, то внешний угол при вершине, противолежащей основанию треугольника, в два раза больше угла при основании. Действительно, этот внешний угол равен сумме двух углов при основании равнобедренного треугольника, а так как углы при основании равны, то данный внешний угол в два раза больше угла при основании треугольника.

3. Решить задачу № 234 на доске и в тетрадях (рассмотреть два случая).


IV. Самостоятельная работа обучающего характера (15-20 мин).

Вариант I

1. Один из углов равнобедренного треугольника равен 96°. Найдите два других угла треугольника.

2. В треугольнике СДЕ с углом ∠E = 32° проведена биссектриса CF, ∠СFД = 72°. Найдите ∠Д.

Вариант II

1. Один из углов равнобедренного треугольника равен 108°. Найдите два других угла треугольника.

2. В треугольнике СДЕ проведена биссектриса CF, ∠Д = 68°, ∠Е = 32°. Найдите ∠CFД.

Вариант III

1. В равнобедренном треугольнике MNP с основанием МР и углом ZN= 64° проведена высота МН. Найдите АРМН.

2. В треугольнике СДЕ проведены биссектрисы СК и ДР, пересекающиеся в точке F, причем ZДРК = 78°. Найдите /.СЕД.

Вариант IV

1. В равнобедренном треугольнике СДЕ с основанием СЕ и ∠Д = 102° проведена высота СН. Найдите ∠ДСН.

2. В треугольнике ABC проведены биссектрисы AM и BN, пересекающиеся в точке К, причем ∠AKN = 58°. Найдите ∠ACB.


V. Итоги урока.

Домашнее задание: изучить пункты 30-31; ответить на вопросы 1-5 на с. 89; решить задачи № 233, 235.






Для любых предложений по сайту: [email protected]