Относительность времени - Элементы теории относительности - Оптика

Физика - Поурочные планы к учебникам Мякишева Г. Я. и Касьянова В. А. 11 класс

Относительность времени - Элементы теории относительности - Оптика

Цель: доказать, что время относительно.

Ход урока

I. Организационный момент


II. Проверка домашнего задания


III. Повторение изученного

- Что показал эксперимент Майкельсона-Морли?

- Почему результаты эксперимента Майкельсона-Морли противоречили классическому закону скоростей?

- Что изучает специальная теория относительности и общая теория относительности?

- Сформулируйте первый и второй постулаты теории относительности и объясните их смысл.

- Почему существование черных дыр объясняется наличием верхнего предела скорости распространения любого взаимодействия?


IV. Изучение нового материала

Существование предельной скорости передачи взаимодействий вызывает необходимость глубокого изменения обычных представлений о пространстве и времени, основанных на повседневном опыте. Представление об абсолютном времени, которое течет раз и навсегда заданным темпом, совершенно независимо от материала и его движения, оказывается неправильным.

Если допустить мгновенное распространение сигналов, то утверждение, что события в двух раздельных точках А и В произошли одновременно, будет иметь абсолютный смысл. Поместить в точках А и В часы и синхронизировать. Если в точке А часы показывают 0 ч 30 мин и отправить сигнал в точку В тоже в 0 ч. 30 мин, то часы покажут одинаковое время, т. е. будут идти синхронно.

Только располагая в точке А и точке В синхронизированными часами, можно судить о том, произошли ли два события этих точках одновременно или нет. Как можно синхронизировать часы, находящиеся на некотором расстоянии друг от друга, если скорость распространения сигналов не бесконечно велика?

Такой способ используется для проверки часов по радио. Зная расстояние от радиостанции до дома, можно вычислить поправку на запаздывание сигнала. Эта поправка невелика, но при огромных космических расстояниях может оказаться весьма существенной.

Например, космонавт синхронизирует часы, находящиеся в разных концах корабля. Для этого с помощью источника, находящегося неподалеку относительно корабля и расположенного в середине, должна произойти вспышка. Если свет дошел одновременно до обоих часов, то они идут синхронно. Это относится к системе, связанной с кораблем.

В системе отсчета, относительно которой движется корабль, положение иное. Часы на носу корабля удаляются от того места, где произошла вспышка, свет преодолевает расстояние больше половины корабля. Напротив, на корме часы приближаются к месту вспышки, и путь оказывается меньше половины корабля. Наблюдатель придет к выводу - сигнал достигнет часов неодновременно. Часы будут идти неодинаково.

Выводы:

• Одновременность пространственно разделенных событий относительна.

• Причиной является конечность скорости распространения сигналов.


Домашнее задание

п. 77.


Дополнительный материал

Кризис классических представлений о пространстве и времени

Вначале вспомним, что концепция света Френеля включала признание существования эфира, заполняющего все пространство и проникающего во все тела, в котором распространялись световые волны. Концепция света Максвелла понятие эфира сделала не нужным. Несмотря на это, концепция эфира не сошла с арены физики. Дело заключалось в том, что уравнения электродинамики Максвелла были справедливыми в одной системе координат и несправедливыми в другой, движущейся прямолинейно и равномерно относительно первой. Классическая механика, исходившая из признания существования абсолютного времени, единого для всех систем отсчета и любых наблюдателей, признавала, что расстояние между двумя точками пространства должно иметь одно значение во всех системах координат, используемых для определения положения тел в пространстве (т. е. данное расстояние является инвариантом). Преобразование Галилея определяло преобразование координат при переходе от одной системы отсчета к другой. Иначе говоря, если, например, уравнения Ньютона были справедливыми в системе координат, связанной с неподвижными звездами, то они оказывались справедливыми и в других системах отсчета, которые двигались прямолинейно и равномерно относительно данных неподвижных звезд. Таким образом, получалось, что уравнения Максвелла справедливы только в одной системе отсчета, связанной с некоей средой, заполняющей всю вселенную. Вот эту среду и продолжали считать эфиром. Все различие с первоначальной трактовкой эфира заключалось в том, что если раньше под эфиром понимали особую упругую среду, которая была способна передавать световые колебания, то теперь эфиру стала отводиться роль абстракции, необходимой для фиксации тех систем отсчета, в которых справедливы уравнения Максвелла. Однако и данную роль эфир играть не мог.

Изучение световых явлений в движущейся системе координат предполагало определение скорости данной системы координат относительно эфира. Однако никому не удавалось в эксперименте обнаружить движение Земли относительно эфира, что находилось в противоречии с классической теорией. Знаменитый эксперимент Майкельсона-Морли (1887 г.) все сомнения полностью отверг и позволил окончательно отказаться от концепции эфира. Г. А. Лоренц попытался отрицательный результат эксперимента Майкельсона-Морли согласовать с существующими теориями, высказав предположение о том, что тела при своем движении относительно эфира сокращаются в размерах этого движения. Такой подход позволял сохранить концепцию эфира: эфир существует, он неподвижен, движение тела относительно эфира обнаружить невозможно, поскольку в направлении движения тело меняет свои размеры. Из уравнений Лоренца следовало, что все световые явления будут протекать одинаково в разных системах координат, поэтому по этим явлениям обнаружить абсолютное движение по отношению к эфиру невозможно. В свете этого отрицательный результат эксперимента Майкельсона-Морли выглядел вполне естественным, а точная связь наблюдателей, движущихся равномерно и прямолинейно друг относительно друга, выражалась не преобразованиями Галилея, а преобразованиями Лоренца. Понимание причин замены преобразований Галилея преобразованиями Лоренца и выяснение физических следствий этой замены потребовало пересмотра понятий пространства и времени.

Вспомним также, как развивались представления о пространстве и времени. Для аристотельской физики характерно представление о покое как естественном состоянии любого тела. Это значит, что в движение тело может прийти только под действием силы или импульса. Следствием такого представления был вывод о том, что тяжелые тела должны падать с большей скоростью, чем легкие, т. к. они сильнее притягиваются к Земле. В рамках этой традиции законы, которым подчинялась Вселенная, выводились умозрительно и не проверялись на опыте.

Галилей, заложивший начало современных представлений о законах движения тел, первым подверг сомнению представления аристотелевской физики. Скатывая по гладкому откосу шары разного веса, Галилей установил, что скорость увеличивается независимо от веса тела - на катящееся тело всегда действует одна и та же сила (вес тела), в результате чего скорость тела возрастала. Это означало, что приложенная к телу сила не просто заставляет это тело двигаться (как полагали до Галилея), а изменяет скорость тела. Ньютон на основе произведенных Галилеем измерений вывел законы движения. Первый закон: всякое тело пребывает в состоянии покоя или равномерного прямолинейного движения до тех пор, пока действующие на него силы не изменят это состояние. Второй закон: произведение массы тела на его ускорение равно действующей силе, а направление ускорения совпадает с направлением силы. Третий закон: действию всегда соответствует равное и противоположно направленное действие (иначе: действия двух тел друг на друга всегда равны по величине и направлены в противоположные стороны). Кроме этих законов Ньютоном открыт закон всемирного тяготения: всякое тело притягивает любое другое тело с силой, пропорциональной массам этих тел. Чем дальше находятся тела друг относительно друга, тем меньше сила взаимодействия. Гравитационная сила притяжения звезды составляет четвертую часть силы притяжения такой же звезды, расположенной на вдвое меньшем расстоянии. Данный закон позволяет с большой точностью вычислять орбиты планет.

Если для Аристотеля состояние покоя считалось предпочтительным (если на тело не действует какая-то сила), то из законов Ньютона следовало, что единого эталона покоя нет. Это значит, что можно считать тело А движущимся относительно покоящегося тела В и наоборот - считать тело В движущимся относительно покоящегося тела А. Отсюда следует, что невозможно определить, имели ли место два события в одной точке пространства, если они произошли в разные моменты времени. Иначе говоря, никакому событию нельзя приписать абсолютного положения в пространстве (как считал Аристотель). Это вытекало из законов Ньютона. Но это противоречило идее абсолютного бога. Поэтому Ньютон не признавал отсутствия абсолютного пространства, т.е. того, что следовало из открытых законов.

Общим для Аристотеля и Ньютона было признание абсолютного времени - оба полагали, что время между двумя событиями можно измерить однозначно и что результат не зависит от того, кто осуществляет измерения, лишь бы были в наличии у измеряющего правильные часы. Время считалось полностью отделенным от пространства и не зависящим от него.

В 1676 г., за одиннадцать лет до выхода «Математических начал натуральной философии» Ньютона, датский астроном О. Х. Ремер установил, что свет распространяется с конечной, хотя и очень большой скоростью. Но лишь Д. К. Максвеллу - создателю классической электродинамики - удалось объединить две частные теории, описывавшие электрические и магнитные силы. Согласно сформулированным Максвеллом уравнениям, описывающим электромагнитные явления в произвольных средах и в вакууме, в электромагнитном поле могут существовать распространяющиеся с постоянной скоростью волны (радиоволны с длиной метр и более, волны сверхвысокочастотного диапазона с длиной порядка сантиметра, волны инфракрасного диапазона с длиной до десяти тысячных сантиметра, волны видимого сектора с длиной сорок - восемьдесят миллионных долей сантиметра, волны ультрафиолетового, рентгеновского и гамма-излучения с длиной волны еще более короткой.

Из теории Максвелла вытекало, что радиоволны и свет имеют фиксированную скорость распространения. Но поскольку после появления теории Ньютона представления об абсолютном покое ушли в прошлое, возник вопрос: относительно чего измерять скорость. Для этого было введено понятие эфира - особой субстанции, заполнявшей пространство. Стали считать, что световые волны распространяются в эфире (как звуковые в воздухе), а скорость распространения определяется относительно эфира. Наблюдатели, движущиеся относительно эфира с разными скоростями, должны были видеть, что свет к ним идет с разной скоростью, но скорость света относительно эфира должна оставаться неизменной. Это означало, что при движении Земли в эфире по своей орбите вокруг Солнца скорость света в направлении движения в сторону источника света должна быть выше по сравнению со скоростью света при условии отсутствия движения к источнику света. Однако опыт, поставленный А. Майкельсоном и Э. Морли в 1887 г., в котором они сравнивали скорость света, измеренную в направлении движения Земли, со скоростью, измеренной в перпендикулярном этому направлению движения, показал, что обе скорости одинаковы. Датский физик X. Лоренц результат эксперимента Майкельсона-Морли объяснял тем, что все движущиеся в эфире объекты сокращаются в размерах, а часы замедляют свой ход.

Следующий шаг сделал А. Эйнштейн созданием специальной теории относительности, из которой вытекало, что при условии отказа от понятия абсолютного времени нет никакой надобности в эфире. (Чуть позже аналогичную позицию высказал и А. Пуанкаре.)






Для любых предложений по сайту: [email protected]