Физика: Универсальный справочник
Взаимодействие - Основы динамики - МЕХАНИКА
Взаимодействие в физике — это воздействие тел или частиц друг на друга, приводящее к изменению их движения.
Близкодействие и дальнодействие (или действие на расстоянии). О том, как осуществляется взаимодействие тел, в физике издавна существовали две точки зрения. Первая из них предполагала наличие некоторого агента (например, эфира), через который одно тело передает свое влияние на другое, причем с конечной скоростью. Это теория близкодействия. Вторая предполагала, что взаимодействие между телами осуществляется через пустое пространство, не принимающее никакого участия в передаче взаимодействия, причем передача происходит мгновенно. Это теория дальнодействия. Она, казалось бы, окончательно победила после открытия Ньютоном закона всемирного тяготения. Так, например, считалось, что перемещение Земли должно сразу же приводить к изменению силы тяготения, действующей на Луну. Кроме самого Ньютона, позднее концепции дальнодействия придерживались Кулон и Ампер.
После открытия и исследования электромагнитного поля (см. Электромагнитное поле) теория дальнодействия была отвергнута, так как было доказано, что взаимодействие электрически заряженных тел осуществляется не мгновенно, а с конечной скоростью (равной скорости света: с = 3 · 108 м/с) и перемещение одного из зарядов приводит к изменению сил, действующих на другие заряды, не мгновенно, а спустя некоторое время возникла новая теория близкодействия, которая была затем распространена и на все другие виды взаимодействий. Согласно теории близкодействия взаимодействие осуществляется посредством соответствующих полей, окружающих тела и непрерывно распределенных в пространстве (т. е. поле является тем посредником, который передает действие одного тела на другое). Взаимодействие электрических зарядов — посредством электромагнитного поля, всемирное тяготение — посредством гравитационного поля.
На сегодняшний день физике известны четыре типа фундаментальных взаимодействий, существующих в природе (в порядке возрастания интенсивности): гравитационное, слабое, электромагнитное и сильное взаимодействия.
Фундаментальными называются взаимодействия, которые нельзя свести к другим типам взаимодействий.
Фундаментальные взаимодействия отличаются интенсивностью и радиусом действия (см. табл. 1.1). Под радиусом действия понимают максимальное расстояние между частицами, за пределами которого их взаимодействием можно пренебречь.
Таблица 1.1
Основные характеристики фундаментальных взаимодействий
Взаимодействие |
Взаимодействующие частицы |
Радиус действия, м |
Относительная интенсивность |
Гравитационное |
Все |
∞ |
1 |
Слабое |
Все, кроме фотона |
10 -17 |
1032 |
Электромагнитное |
Заряженные частицы |
∞ |
1036 |
Сильное |
Адроны |
10 -15 |
1038 |
По радиусу действия фундаментальные взаимодействия делятся на дальнодействующие (гравитационное и электромагнитное) и короткодействующие (слабое и сильное)(см. табл. 1.1).
Гравитационное взаимодействие универсально: в нем участвуют все тела в природе — от звезд, планет и галактик до микрочастиц: атомов, электронов, ядер. Его радиус действия равен бесконечности. Однако как для элементарных частиц микромира, так и для окружающих нас предметов макромира силы гравитационного взаимодействия настолько малы, что ими можно пренебречь (см. табл. 1.1). Оно становится заметным с увеличением массы взаимодействующих тел и потому определяющим в поведении небесных тел и образовании и эволюции звезд.
Слабое взаимодействие присуще всем элементарным частицам, кроме фотона. Оно отвечает за большинство ядерных реакций распада и многие превращения элементарных частиц.
Электромагнитное взаимодействие определяет структуру вещества, связывая электроны и ядра в атомах и молекулах, объединяя атомы и молекулы в различные вещества. Оно определяет химические и биологические процессы. Электромагнитное взаимодействие является причиной таких явлений, как упругость, трение, вязкость, магнетизм и составляет природу соответствующих сил. На движение макроскопических электронейтральных тел оно существенного влияния не оказывает.
Сильное взаимодействие осуществляется между адронами, именно оно удерживает нуклоны в ядре.
В 1967 г. Шелдон Глэшоу, Абдус Салам и Стивен Вайнберг создали теорию, объединяющую электромагнитное и слабое взаимодействия в единое электрослабое взаимодействие с радиусом действия 10-17 м, в пределах которого исчезает различие между слабым и электромагнитным взаимодействиями.
В настоящее время выдвинута теория великого объединения, согласно которой существуют лишь два типа взаимодействий: объединенное, куда входят сильное, слабое и электромагнитное взаимодействия, и гравитационное взаимодействие.
Есть также предположение, что все четыре взаимодействия являются частными случаями проявления единого взаимодействия.
В механике взаимное действие тел друг на друга характеризуется силой (см. Сила). Более общей характеристикой взаимодействия является потенциальная энергия (см. Потенциальная энергия).
Силы в механике делятся на гравитационные, упругости и трения. Как уже упоминалось выше, природа механических сил обусловлена гравитационным и электромагнитным взаимодействиями. Только эти взаимодействия можно рассматривать как силы в смысле механики Ньютона. Сильные (ядерные) и слабые взаимодействия проявляются на таких малых расстояниях, при которых законы механики Ньютона, а вместе с ними и понятие механической силы теряют смысл. Поэтому термин «сила» в этих случаях следует воспринимать как «взаимодействие».